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Abstract.

Considering turbulent clouds containing small heavy particles, we investigate the reverse effect of particle collision, in

particular collision-&-coagulation, on particle clustering and relative motion. We perform various cases of direct numerical

simulation (DNS) of coagulating particles in isotropic turbulent flow and find that, due to collision-coagulation, the radial dis-

tribution functions (RDF) fall-off dramatically at scales r ∼ d (where d is the particle diameter) to small but finite values; while5

the mean radial-component of particle relative velocities (MRV) increase sharply in magnitudes. Based on a previously pro-

posed Fokker-Planck (drift-diffusion) framework, we derive a theoretical account of the relationship among particle collision-

coagulation rate, RDF and MRV. The theory includes contribution from turbulent-fluctuations absent in earlier mean-field

theories. We show numerically that the theory accurately account for the DNS results. We also proposed a phenomenological

model for the MRV which is accurate when calibrated using 4th moments of the fluid velocities. We uncover a paradox: the10

unjustified accuracy of the differential version of the theory. Our result demonstrate strong coupling between RDF and MRV

and implies that earlier isolated studies on either RDF or MRV have limited relevance for predicting particle collision rate.

1 Introduction

The motion and interactions of small particles in turbulence has fundamental implications for atmospheric clouds, specifically,

it is relevant to the time-scale of rain formation particularly in warm-clouds (Falkovich et al., 2002; Wilkinson et al., 2006;15

Grabowski and Wang, 2013) [a similar problem also applies to planet formation in astrophysics (Johansen et al., 2007)]. It is

also important for engineers who are designing future, greener, combustion engines, as this is a scenario they wish to understand

and control in order to increase fuel-efficiency (Karnik and Shrimpton, 2012). Cloud particles or droplets, due to their inertia,

are known to be ejected from turbulent vortices and thus form clusters (Wood et al., 2005; Bec et al., 2007; Saw et al., 2008;

Karpińska et al., 2019) i.e. regions of enhanced particle-density; this together with collision of droplets is of direct relevance for20

the mentioned applications. Due to the technical difficulty of obtaining extensive and systematic experimental or field data on

particle/droplet collision in turbulent cloud, many of the recent studies rely on direct numerical simulation (DNS), example of
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which could be found in e.g. (Onishi and Seifert, 2016; Wang et al., 2008) and reference therein. Up until now, we do not have

definitive answers to basic questions such as how to calculate particle collision rate from basic turbulence-particle parameters

and what is the exact relation between collision and particle clustering and/or motions, for, as we shall see, our work reveals25

that collision-coagulation causes profound changes in both mean radial-component of relative particle velocity (MRV) and

radial distribution function (RDF), questioning earlier understanding of the problem (RDF is a metric of the degree of particle

clustering). The difficulty of this problem is in part related to the fact that turbulence is, even by itself, virtually intractable

theoretically due to its nonlinear and complex nature.

The quest for a theory of particle collision in turbulence started in 1956, when Saffman and Turner (1956) derived a30

mean-field formula for collision rate of finite size, inertialess, particles. In another landmark work (Sundaram and Collins,

1997), a general relation among collision-rate (Rc), particle clustering and mean particle relative radial velocity was presented:

Rc/(n1n2V )=4πd2g(d)〈wr(d) |wr ≤ 0〉∗ , where g(r) is the RDF, wr is the radial component of relative velocity between

two particles, 〈wr(d) |wr ≤ 0〉∗ is the MRV i.e. a (conditional) mean of wr (averaged over all particle pairs); ni’s are global

averages of particle number density, V is the spatial volume of the domain, d the particle diameter. The remarkable simplicity35

of this finding inspired a "separation paradigm", which is the idea that one could study the RDF or MRV separately (which are

technically easier), the independent results from the dual may be combined to accurately predicts Rc (an idea that we subse-

quently challenge). Another work of special interest here is the drift-diffusion model by Chun, Koch et al. (Chun et al., 2005)

(hereafter: CK theory) (note: there are other equivalent theories (Balkovsky et al., 2001; Zaichik and Alipchenkov, 2003)). The

CK theory, derived for non-colliding particles in the limit of vanishing particle Stokes number St (a quantity that reflects the40

importance of the particle’s inertia in dictating its motion in turbulence), correctly predicted the power-law form of the RDF

(Reade and Collins, 2000; Saw et al., 2008) and have seen remarkable successes over the years including the accurate account

of the modified RDF of particles interacting electrically (Lu et al., 2010) and hydrodynamically (Yavuz et al., 2018).

Here, we first present results on RDF and MRV for particle undergoing collision-coagulation1. The data is obtained via

direct numerical simulation (DNS), which is the gold-standard computational method in term of accuracy and completeness45

for solving the most challenging fluid dynamics problem i.e. turbulent flows. DNS solves the fundamental equation of fluid

dynamics, the Navier-Stokes Equation, with full resolution and without turbulence modeling. The accuracy of DNS for various

turbulent-flows have been experimentally validated for decades (see e.g. the compilation of results in Pope (2000)); while for

simulating dynamics of small heavy particles, experimental validation of its accuracy could be found in Salazar et al. (2008);

Saw et al. (2012b, 2014); Dou et al. (2018).50

Analysis of the DNS results is then followed by a theoretical account of the relations between collision-rate, RDF and

MRV that includes mean-field contributions (Saffman and Turner, 1956; Sundaram and Collins, 1997) and contributions from

turbulent fluctuations (absent from earlier theories (Saffman and Turner, 1956; Sundaram and Collins, 1997)). The theory is

derived from the Fokker-Planck (drift-diffusion) framework first introduced in the CK theory (Chun et al., 2005). We shall see

1Coagulation is, in a sense, the simplest outcome of collision. In the sequel we shall argue that the major qualitative conclusions of our work also applies

to cases with other collisional outcome.
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that the main effect of collision-coagulation is the enhanced asymmetry in the particle relative velocity distribution2 and that55

this leads to nontrivial outcomes.

2 Direct Numerical Simulation (DNS)

To observe how particle collision-coagulation affects RDF and MRV, we performed direct numerical simulation (DNS) of

steady-state isotropic turbulence embedded with particles of finite but sub-Kolmogorov size. We solve the incompressible

Navier-Stokes Equations (Eq. (1)) using the standard pseudo-spectral method (Rogallo, 1981; Pope, 2000; Mortensen and60

Langtangen, 2016) inside a triply periodic cubic-box.

∂u
∂t

+ u · ∇u =−1
ρ
∇p+ ν∇2u + f(x,t) ,

∇ ·u = 0 , (1)

where ρ,p,ν, f are the fluid density, pressure, kinematic viscosity, imposed forcing respectively. The velocity field is discretized65

on a 2563 grid. Aliasing resulting form Fourier transform of truncated series is removed via a 2/3-dealiasing rule (Rogallo,

1981). A statistically stationary and isotropic turbulent flow is achieved by continuously applying random forcing to the lowest

wave-numbers until the flow’s energy spectrum is in steady-state. The 2nd-order Runge-Kutta time stepping was employed.

Further details of such a standard turbulence simulator can be found in e.g. (Pope, 2000; Rogallo, 1981; Mortensen and

Langtangen, 2016).70

Particles in the simulations are advected via a viscous Stokes drag force:

dv/dt= (u−v)/τp ,

where u,v are the local fluid and particle velocity respectively, τp is the particle inertia respond time. The focus of our study

is on the effect of particle collision-coagulation in the simplest fluid dynamic setting so that its implication and fundamental

interaction with turbulence can be fully understood before moving on to more complex settings in future works. For this reason,75

we choose not to include hydrodynamic interactions and gravitational settling in the dynamic of the particles (this implies that if

practical applicability is of concern, the current results only applies to cloud particles with gravitational terminal velocities that

are small compared to the velocity scale of the smallest turbulent eddies, e.g. particle of size . 50µm in atmospheric clouds).

In this context, the particle Stokes number, defined as τp/τη where τη is the Kolmogorov time-scale, could be expressed as

St= 1
18 (ρp/ρ)(d/η)2, where ρp/ρ is the particle-to-fluid mass-density ratio, d is the particle diameter, η the Kolmogorov80

length-scale. Time-stepping of the particle motion is done using a 2nd-order modified Runge-Kutta method with "exponential

integrator" that is accurate even for τp much smaller than the fluid’s time-step (Ireland et al., 2013). The particles are spherical

and collide when their volumes overlap and a new particle is formed conserving volume and momentum. We continuously,

randomly, inject new particles into the flow so that the system is in a steady-state after some time. Statistical analysis is done

at steady-state on monodisperse particles (involving particles with the same St).85

2In the collision-less case, the asymmetry is much weaker and is related to viscous dissipation of energy in turbulencePope (2000).
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Reλ ν [10−2m2/s] urms [dm/s] ε [10−2m2/s3] η [dm] τη [s] Lc [dm] d [dm]

133 0.001 0.613 0.117 0.00962 0.0925 2π d∗ or 2d∗

Table 1. Values of the parameters in the DNS. (Note: dm= decimeter). Respectively, we have the Taylor-scale Reynolds number, kinematic

viscosity of the fluid, root-mean-square of fluid velocity, kinetic energy dissipation rate, Kolmogorov length- and time-scale, length of the

simulation cube and particle diameters considered. We have introduced d∗ to represent the specific value: 9.49×10−4 (explanation is given

later in the text). We have chosen the units of the length (time) scale in the DNS to be in decimeter (second), such that ν is nearly its typical

value in the atmosphere.

The values of key parameters of the DNS are given in Table 1.

3 Basics of the Drift-Diffusion Theory

As described in (Chun et al., 2005), in the limit of St� 1, particle motions are closely tied to the fluid’s and, to leading order,

completely specified by the particle position and the fluid’s velocity gradients. Now consider the fundamental Fokker-Planck90

equation which is closed and deterministic (see e.g. Appendix J in (Pope, 2000)):

∂P

∂t
+
∂(WiP )
∂ri

= 0 , (2)

where P ≡ P (ri, t |Γij(t)) is the (per volume) probability density (PDF) for a secondary particle (which could have any

history) to be at vector position ri relative to a primary particle at time t, conditioned on a fixed and known history of the

velocity gradient tensor along the primary particle’s trajectory Γij(t), Wi is the mean velocity of secondary particles relative95

to the primary, under the same condition. Note: Wi is a conditional-average, while wi denotes a realization of relative velocity

between two particle.

From this, one could derive an equation for 〈P 〉(r) (where 〈.〉 implies ensemble averaging over primary particle histories):

∂ 〈P 〉
∂t

+
∂

∂ri
(〈Wi〉〈P 〉+ 〈WiP

′〉) = 0 . (3)

However, this equation in not closed due to correlation between the fluctuating terms Wi and P ′ ≡ P −〈P 〉. The correlation100

〈WiP
′〉 can be written in terms of a drift flux and diffusive flux (detailed derivation is well described in (Chun et al., 2005)),

such that we have:

∂ 〈P 〉
∂t

+
∂

∂ri

(
qdi + qDi

)
+
∂(〈Wi〉〈P 〉)

∂ri
= 0 , (4)

where the drift flux is:

qdi =−
t∫

−∞

〈
Wi(r, t)

∂Wl

∂r′l
(r′, t′)

〉
〈P 〉(r′, t′)dt′,105
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and the diffusive flux is:

qDi =−
t∫

−∞

〈Wi(r, t)Wj(r′, t′)〉
∂ 〈P 〉
∂r′j

(r′, t′)dt′,

where r′ satisfies a characteristic equation: ∂r
′
i

∂t′ =Wi(r′, t′) , with boundary condition: when t′ = t, r′i = ri .

4 DNS Results, Theory and Discussion

We compute the RDF via g(r)=Npp(r)/[ 12N(N − 1)δVr/V ], where Npp(r) is the number of particle pairs found to be110

separated by distance r, δVr is the volume of a spherical shell of radius r and infinitesimal thickness δr,

Figure 1 shows the RDFs obtained for particles of different Stokes numbers and sizes. The cases shown includes St=

0.22, 0.54 in panel-a, and St= 0.054,0.001 in panel-b. In all cases, except one, the particles are of the same size d= d∗,

where d∗ represents the specific value of d∗=9.49×10−4 dm, chosen so that the particle sizes are one order of magnitude

smaller than the Kolmogorov scale (η), thus allowing us to still observe a regime (3d. r . 30η) of power-law RDFs. To115

shows the effect of changing particle size, panel-a also includes a case of (St=0.54,d=2d∗) for comparison. The main figure

in panel-a shows clearly that the RDFs for these colliding-coagulating particles fall-off dramatically at r ∼ d, in contrast to

what was seen in earlier studies of non-colliding particles where g(r) are simple power-laws (Chun et al., 2005; Saw et al.,

2008). We see that as r approaches d the steepness of the curve (see e.g. the blue-circles) increases as g(r) drops-off, this

and the fact that the abscissa is logarithmic implies that ∂g∂r is increasing exponentially in the process. As a consequence, it is120

difficult to discern from these plots if the limit of g(r) are still nonzero at particle contact (r→ d), which is a important question

as limr→d {g(r)}=0 implies that the mean-field formula of Sundaram and Collins (1997) has zero contribution towards Rc,

i.e. collision rate is fully due to turbulent-fluctuations. It is only by re-plotting g(r) versus r−d (see insets in Fig. 1), and using

a remarkable resolution that is 103 finer than d, that we see a convincing trend supporting a finite g(r→ d).

The strong effect of particle collision on the RDF (also on MRV as we shall we later) challenges the validity of the "separation125

paradigm". Also clear in panel-a is the observation that with changing particle-size (d) the location of the sharp fall-off merely

shifts to where the new value of d is. We note that similar fall-off of RDF was previously observed (Sundaram and Collins,

1997) but a complete analysis and theoretical understanding was lacking. Also, a study on multiple collisions (Voßkuhle et al.,

2013) had hinted at the potential problem with the separation paradigm.

Another observation is that in the power-law regime (3d. r . 30η), the RDFs appear (as expected) as straight-lines with130

slopes (i.e. power-law exponents) that increase with St and are numerically consistent with those found for non-colliding

particles (see e.g. (Saw et al., 2012b)).

4.1 Theoretical Account via Drift-Diffusion Theory

To theoretically account for the new findings, we make some derivations that is partially similar to the ones in (Chun et al.,

2005), but under a new constraint due to coagulations: "At contact (r = d), radial component of the particle relative velocities135
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Figure 1. RDFs (g(r)) of particles that coagulate upon collision. Note: d∗=9.49×10−4 (explanation in the text). a) g(r) for cases of

different Stokes number and particle diameter (d). � : St=0.22, d=d∗, # : St=0.54, d=d∗, 4 : St=0.54, d=2d∗. All g(r) drop-off

exponentially when r→ d (more details in text). Inset: g(r) versus r− d for the # case. It exemplify the fact that limr→d g(r) is nonzero.

b) RDFs versus r− d1 (where d1 =0.99d) for the case of St=0.054, d=d∗. 3 : the raw observed RDF. Red-line: power-law fit to the

raw RDF (i.e. to the 3-plot) in the large-r regime (the formula of the resultant curve is 0.890r−0.0535). It is also the expected g(r) for

non-colliding particles under the same conditions, thus it is equivalent to gs(r) in the ansatz ga(r) = g0(r)gs(r) (details in text). # : the

compensated RDF, defined as the raw RDF divided by gs(r) (note: gs(r) is the RDF expected for non-colliding particles under the same

condition), this may be understood as a ‘modulation’ on the RDF due to collision-coagulation and is expected to be St-independent, in the

first-order. Cyan-line: two-piece power-law fits to the compensated-RDF (the #-plot) in the small and large r− d1 regimes respectively (fit

results: 4.17(r− d1)
0.212, 1.00(r− d1)

−2×10−4 ), this is thus a 1st-order model of g0(r). Inset: RDFs versus r− d. # : compensated RDF

for St=0.054, d=d∗, equivalent to the #-plot in the panel’s main figure; 4 : g(r) for the case of St=0.001, d=d∗, i.e. particles with

almost zero-St but finite size. Comparison of the last two plots suggests that g0(r) has negligible St-dependence.
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can not be positive3, while with increasing r the constraint is gradually relaxed." The first consequence of this is that the

distribution of the radial component of the relative particle velocity (Wr) is highly asymmetric at r ≈ d, i.e. the PDF of positive

Wr’s are very small (this constitute the "enhanced asymmetry" mentioned earlier). Thus for r ≈ d, the mean of Wr , i.e. 〈Wr〉,
must be predominantly negative. From this, one could derive, in the limit of St� 1, a master equation (details in Sec. 3 or

(Chun et al., 2005)):140

∂ 〈P 〉
∂t

+
∂

∂ri

(
qdi + qDi

)
+
∂(〈Wi〉〈P 〉)

∂ri
= 0 , (5)

where P (r) is the PDF of finding another particle at position r from a ‘primary’ particle4, 〈.〉 implies averaging over all primary

particle trajectories (e.g. 〈Wr〉 ≡ unconditional mean of wr), qdi is the drift flux (of probability due to turbulent fluctuation)

and qDi the diffusive flux.

As described in Sec. 3, the definition of the drift flux is : qdi =−
∫ t
−∞

〈
Wi(r, t)∂Wl

∂r′l
(r′, t′)

〉
〈P 〉(r′, t′)dt′, and the diffusive145

flux is: qDi =−
∫ t
−∞ 〈Wi(r, t)Wj(r′, t′)〉 ∂〈P 〉∂r′j

(r′, t′)dt′, where r′ satisfies a characteristic equation: ∂r
′
i

∂t′ =Wi(r′, t′). We then

expandWi, ∂Wl

∂rl
and (consequentially) the fluxes as perturbation series with St as the small parameter (details in (Supplements)

or (Chun et al., 2005)). The coagulation constraint has nontrivial effects on the coefficients of these series. For the drift flux,

the leading order terms (in powers of St) are:

qdi =−〈P 〉(r)rk

t∫

−∞

[
A

(1)
ik St +A

(2)
ki St

2
]
dt′ , (6)150

with A(1)
ik =τη 〈Γik(t)Γlm(t′)Γml(t′)〉 and A(2)

ki =τ2
η 〈Γij(t)Γjk(t)Γlm(t′)Γml(t′)〉; Γij is the ij-th component of the fluid’s

velocity gradient tensor at the particle position. As explained above, coagulation-constraint causes the PDF of relative particle

velocities to become highly asymmetric for r ∼ d, thus A(1)
ik is nonzero at these scale. This is very different to the case of non-

colliding particles (Chun et al., 2005) where A(1)
ik is always zero due to statistical isotropy. We found that under the constraint,

DNS gives
∫ t
−∞A

(1)
ik dt

′ ≈−0.18 and
∫ t
−∞A

(2)
ki dt

′ ≈ 2.45 (more in (Supplements)). Thus for r ∼ d, the drift flux is negative155

for large St but becomes positive when St decreases below a value of order 0.01; and in the limit of St→0, it is dominated by

the first term in (6).

qDi is a ‘nonlocal’ diffusion caused by fluctuations and can be estimated using a model that assume the particle relative

motions are due to a series of random straining flows (Chun et al., 2005). Chun et al. (2005) showed that, generally, qDi has

an integral form (due to nonlocality), and only in the special case where g(r) is a power-law, may it be cast into a differential160

form (similar to a local diffusion). In view of the nontrivial g(r) observed here, we must proceed with the integral form:

qDr =cst r
∫
dΩ
∫∞
0
dtfF (tf )

∫∞
d/r

dR0R0
2 〈P 〉(rR0)fI(R0,µ, tf ) ,

where R0 ≡ r0/r with r0 as the initial separation distance of a particle pair before a straining event; F the probability density

function for the duration of each event; fI is determined by relative prevalence of extensional versus compressional strain
3In other words particles may approach each other (and collide) but they can not be created at contact and then separate.
4 borrowing the notation of CK-theory (Chun et al., 2005), Wi,P are ensemble-averages over trajectories of satellite (secondary) particles around a primary

particle whose history (including the fluid’s velocity gradient tensor around it) is known and fixed.
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events (more details in (Supplements) or (Chun et al., 2005)); note: due to coagulation, the R0-integration starts from d/r. We165

differ crucially from the CK theory via the introduction of the factor cst, which is positive, of order . 1 and may depend on St

(more in (Supplements)); .

By definition, g(r)≡ α〈P 〉. Periodic boundaries in our DNS imply that α= V , (more in (Supplements)). Using this and the

fact that the problem has only radial (r ) dependence, we rewrite (5) as:

r2
∂g(r, t)
∂t

+
∂

∂r

[
r2α

(
qdi + qDi

)
+ r2 〈Wr〉g(r, t)

]
= 0 , (7)170

where the content inside [.] gives the total flux. For a system in steady-state, the first term in (7) is zero, and upon integrating

with limits [d,r], we have:

cst r
3

∫
dΩ

∞∫

0

dtfF (tf )

∞∫

d/r

dR0R
2
0 g(rR0)fI(R0,µ, tf )

+ g(r)
[
r2 〈Wr〉−Ar3

]
=−R∗c , (8)175

where we have identify the total flux at contact (r = d) as the negative of the (always positive) normalized collision rate

R∗c ≡Rc/(4π[N(N − 1)/2]/V ), and comparing with (6), we see that:

A≡ St
t∫

−∞

A
(1)
ik dt

′ + St2
t∫

−∞

A
(2)
ki dt

′ , (9)

with the specific values of the t′-integrals already given above. For clarity, one should note that on the left of Eq. (8), we have

the diffusive flux (qDr ), the mean-field flux (r2g(r)〈Wr〉), the drift flux (qdr ); while on the right, the total flux is given in terms180

of the normalized collision rate (R∗c ). We note that this equation contains the relationship among RDF, MRV and collision rate,

besides other information.

4.2 Ansatz and Solution

Simple analytical solution to Eq. (8) may be elusive due to its integral nature (which follows from non-locality of the diffusive-

flux). However, one could gain insights into it and test its accuracy using numerical solutions. To do that, we begin with a185

simple ansatz for g(r) and show that (8) could numerically predict 〈Wr〉(r) with reasonable accuracy. The ansatz has the form

ga(r) = gs(r)g0(r), with gs(r) = c0r
−c1 i.e. the RDF for non-colliding particles (Chun et al., 2005). To keep things simple

(as a first order analysis), we let g0 takes the simplest form that could still capture the main features of the RDFs as seen in

Fig. 1, namely g0(r) = c00(r− d1)c10 . In words, g0 is a two-piece power-law of r− d1, where c00(r), c10(r) are piece-wise

constants that switch from one fixed value to another at a crossover-scale rc (of the order of d). The values of c00 and c10 are190

determined from the DNS produced RDF, by fitting power-laws to the small and large r regimes (rc results naturally from the

intersection of the two power-law fits). The fact that we have found g(r→ d)> 0 implies that d1 < d; also we shall see that

d1 has negligible St-dependence when St is small. An example of the ansatz is shown Fig. 1b for the case of St=0.05 (the

red-line is gs, cyan-line is g0).
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Figure 2. Mean radial component of relative velocity (MRV) for particles of specific Stokes numbers and some theoretic-numerical pre-

dictions. a) The markers are DNS results with 4 : St=0.001; # : St=0.054; � : St=0.11. The colored lines are the various numerical

predictions using the theories (equation (8) or (12)) and the ansatz (details in text). Orange-line: 〈Wr〉r∼d,St=0.054 , namely the numerical

prediction using the integral version of the theory (Eq. (8)) for the small-r regime (i.e. r ∼ d); black-line: 〈Wr〉r�d,St=0.054 , same as the

previous but for the large-r regime (r� d); green-line: numerical predictions using the differential version of the theory (Eq. (12)). Inset)

A repeat of the main figure in log-log axes. b) MRV for particles compared with predictions based on phenomenological model of particle

approach angles (Eq. (10) and (11)). The markers are DNS results with 4: St=0.001; # : St=0.054. Dotted lines are model predictions

of 〈Wr〉St=0 using (10) and (11) with variance K obtained by matching the model’s and DNS’s transverse to longitudinal ratio of structure

functions (TLR) of a certain order. From the top, yellow-line: order 2, green-line: order 4, cyan-line: order 6.
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Next, we numerically evaluate the first term in (8). As we are working in the small St limit, we approximate g(r,St) in195

this term using g(r,St→ 0) (a practice borrowed from (Chun et al., 2005)). Specifically, we replace g(r,St) with the ansatz

fitted to the DNS data of g(r,St=0.001). Using the DNS data, we then estimate A, compute R∗c and cst (it can be shown that

cst = |c1| (more in (Supplements)). Finally we use (8) to predict 〈Wr〉(r).

Comparison of the predicted 〈Wr〉(r) with the ones obtained directly from the DNS is shown in Fig. 2. As shown earlier, for

r ∼ d, A is given by (9). However, as stated earlier, as r increases, the (statistical) asymmetry induced by collision-coagulation200

gradually become subdominant to the isotropy of turbulent-fluctuation. Statistical isotropy implies A(1)
ik = 0 (Chun et al.,

2005), which our DNS confirms. Thus, for r� d, A only depends on the order St2 term in (9), same as the finding in (Chun

et al., 2005) for non-colliding particles. For this reason, we show two versions of the predicted 〈Wr〉, i.e. 〈Wr〉r∼d and 〈Wr〉r�d
which are obtained by settingA to its small-r and large-r limits (−2.6×10−3 , 7.1×10−3) respectively. The agreement between

the DNS and the predictions is remarkable, especially for small r. At r ≈ 2d, the DNS result shows a weak tendency to first205

follow the upward trend of 〈Wr〉r∼d and then falls off significantly at r & 2.5d, as implied by 〈Wr〉r�d, albeit with a rate

sharper than predicted.

4.3 Phenomenological Model of MRV

Alternatively, if MRV of fluid particles 〈Wr〉St=0 is known, one may assumes that in the small St limit, particle velocity statis-

tics are tied to their fluid counterparts (Chun et al., 2005), thus (8) may be used, with 〈Wr〉St=0, to predict RDF (i.e. g(r,St)).210

Fig. 2a shows that 〈Wr〉St>0 from the DNS do not change significantly for St ∈ [0.001,0.1], supporting this approach. Here we

provide a simple, first order model for 〈Wr〉St=0. We limit ourselves to the regime of small particles i.e. d� η; and anticipate

that 〈Wr〉 is non-trivial (nonzero) only for r ∼ d, a fact observable in Fig. 2a. We also assume that the relative trajectories of

particles are rectilinear at such small scales. The coagulation constraint then implies that: in the rest frame of a particle (call

it P1), a second particle nearby must move in such a way that the angle (θ) between its relative velocity and relative position215

(seen by P1) must satisfies: sin−1(d/r) ≤ θ ≤ π , under the convention of sin−1(x) ∈ [−π2 , π2 ], (more in (Supplements)). We

can thus write (by treating negative and positive wr separately, applying the K41-theory (Kolmogorov, 1941) and the bounds

on θ, details in (Supplements)), for St� 1, that:

〈Wr〉 ≡ 〈wr〉∗ = p–〈wr |wr < 0〉∗ + p+〈wr |wr ≥ 0〉∗220

≈−p–ξ–r + p+ξ+r

[
1 +

∫ 0

θm
P+
θ (θ′)cos(θ′)dθ′

∫ π
2

0
P+
θ (θ′)cos(θ′)dθ′

]
, (10)

where 〈.〉∗ denotes averaging over all particle pairs, p+ (p−) is the probability of a realization of wr being positive (negative),

and P+
θ is a conditional PDF such that P+

θ ≡ P (θ |wr ≥ 0)≡ P
(
θ |θ ∈ [0, π2 ]

)
, θm is the minimum of θ described above.

For a first order account, we neglect skewness in the distribution of particle relative velocities and set p± = 0.5. Following225

(Kolmogorov, 1941), we have set 〈wr |wr < 0〉∗ = ξ–r, where ξ± = 0.76
√
ε/(15ν) , (‘0.76’ results from matching ξ– r to the

first-order fluid velocity structure-function seen in the DNS).
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A simple phenomenological model for P (θ) may be constructed using the (statistical) central-limit-theorem by assuming

that the angle of approach θ at any time is the sum of many random-incremental rotations in the past, thus we write:

P (θ) = N exp[K cos(θ−µθ)] sin(θ) , (11)230

where Nexp[...] is the circular normal distribution, i.e. analog of Gaussian distribution for angular data; sin(θ) results from

integration over azimuthal angles (φ). We set µθ = π
2 (neglect skewness in fluid’s relative velocity PDF) and obtain K by

matching the transverse to longitudinal ratio of structure functions (TLR) of the particle relative velocities with the ones via the

DNS data; N is determined via normalization of P (θ). Fig. 2b shows the 〈wr〉∗ derived via (10) and (11), using K calibrated

with TLR of 2nd, 4th, 6th order structure functions respectively. The results have correct qualitative trend of vanishing values235

at large r that increases sharply as r approach d, with the 4th-order’s result giving the best agreement with DNS. Currently

we have not a satisfactory rationale to single out the 4th-order. The TLR of different orders give differing results may imply

that our first-order model may be incomplete, possibly due to over-simplification in (11) or to the inaccuracy of the rectilinear

assumption (d/η in the DNS may be insufficiently small).

4.4 Differential Version of the Theory and Its Validity240

We now discuss an important but precarious theoretical issue. Chun et al. (2005) clearly showed that the non-local diffusion

(qDr ) may be converted, from its general integral form, into a differential version only when the underlying RDF is a simple

power-law. However, Lu et al. (2010) and Yavuz et al. (2018), working in two very different scenarios, found that their pre-

dictions using the differential form of the theory agree well with experiments, even when the RDFs involved was clearly not

power-laws. We shall attempt to remedy this apparent paradox in future work. To examine how well this albeit unjustified245

method works here, we recast (8) into its differential form (Chun et al., 2005):

−τ−1
η Bnl r

4 ∂g

∂r
+ g(r)

[
r2 〈Wr〉−Ar3

]
=−R∗c , (12)

where Bnl = 0.0397 (this value is computed from our DNS, Bnl is expected to depend on flow characteristics e.g. Rλ and τη

(more in (Supplements)). Using (12), the same gsg0 ansatz and A= 7.1×10−3, we make another prediction for 〈Wr〉, which

is plotted in Fig. 2a (green dash-line). The accuracy of the new prediction is worse (the jump correspond to the kink in the250

ansatz) but still on par with results above.

One advantage of (12) is that it admits of a general solution, which we now give, assuming 〈wr〉∗ is given by (10) & (11):

g(r) =
1

β(r)

[∫
β(r)q(r)dr+C

]
, (13)

with q(r) =R∗cτη/(Bnlr
4); β(r) = exp

[∫
p(r)dr

]
; p(r) = [Ar−〈wr〉∗ ]τη/(Bnlr2), (more in (Supplements)).

5 Conclusions255

To conclude, we observed that collision strongly affects the RDF and MRV and imposes strong coupling between them. This

challenges the efficacy of a "separation paradigm" and suggests that results from any studies that preclude particle collision has
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limited relevance for predicting collision statistics5. We have presented a theory for particle collision-coagulation in turbulence

(based on a Fokker-Planck framework) that explains the above observations and verified its accuracy by showing that 〈Wr〉
could be accurately predicted using a sufficiently accurate RDF. The theory account for the full collision-coagulation rate which260

include contributions from mean-field and fluctuations; and as such, our work complements and completes earlier mean-field

theories (Saffman and Turner, 1956; Sundaram and Collins, 1997). We showed that a simple model of particle approach-angles

could capture the main features of 〈Wr〉. We uncovered the unexplained accuracy of the differential drift-diffusion equation

(see discussion around (12)). Our findings provide a new understanding of particle collision and its relation with clustering and

relative motion, which has implications for atmospheric clouds or generally to systems involving colliding particles in unsteady265

flows.
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